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ABSTRACT 
In recent years ad-hoc parallel data 

processing has emerged to be one of the killer 
applications for Infrastructure-as-a-Service 
(IaaS) clouds. Major Cloud computing 
companies have started to integrate 
frameworks for parallel data processing in 
their product portfolio, making it easy for 
customers to access these services and to 
deploy their programs. However, the 
processing frameworks which are currently 
used have been designed for static, 
homogeneous cluster setups and disregard 
the particular nature of a cloud. 
Consequently, the allocated compute 
resources may be inadequate for big parts of 
the submitted job and unnecessarily increase 
processing time and cost. In this paper we 
discuss the opportunities and challenges for 
efficient parallel data processing in clouds 
and present our research project. It is the 
first data processing framework to explicitly 
exploit the dynamic resource allocation 
offered by today’s IaaS clouds for both, task 
scheduling and execution. Particular tasks of 
a processing job can be assigned to different 
types of virtual machines which are 
automatically instantiated and terminated 
during the job execution. 

Keywords: Task computing, query 
processing, dynamic resource allocation, 
Task Computing 

 
I. INTRODUCTION 
For organizations that exclusive need to 

process vast sums Today a developing number of 
organizations need to prepare gigantic measures 

of information in a cost-effective way. Great 
agents for these organizations are administrators 
of Internet web indexes, similar to Google, 
Yahoo, or Microsoft. The boundless measure of 
information they need to manage each day has 
made customary database arrangements 
restrictively costly [5]. Rather, these 
organizations have advanced a design 
worldview in light of countless servers. Issues 
like preparing slithered archives or recovering a 
web file are part into a few autonomous 
subtasks, appropriated among with lease a huge 
IT infrastructure on a fleeting pay- per-use 
premise. Administrators of alleged 
Infrastructure-as-a-Service (IaaS) mists, similar 
to Amazon EC2 [1], let their clients apportion, 
get to, and control an arrangement of Virtual 
Machines (VMs) which keep running inside 
their server farms and just charge them for the 
timeframe the machines are designated. The 
VMs are regularly offered in various sorts, every 
sort with its own qualities (number of CPU 
centers, measure of primary memory, and so 
forth.) and cost. 

 
This paper is an extended It includes further 

details on scheduling strategies and extended 
experimental results. The paper is structured as 
follows: Section II, starts with  analyzing 
 the above mentioned opportunities and 
challenges and derives some important design 
principles for our new framework. In Section
 III, we present  Nephele’s basic 
architecture and outline how jobs can be 
described and executed in the cloud. Section IV, 
provides some first figures on Nephele’s 
performance and the impact of the optimizations 
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we propose. Finally, our work is concluded by 
related work (Section V) and ideas for future 
work 

 
II. CHALLENGES AND OPPORTUNITIE 

Current data processing frameworks like 
Google's Map Reduce or Microsoft's Dryad 
engine have been designed for cluster 
environments. This is reflected in a number of 
assumptions they make which are not 
necessarily valid in cloud environments. In this 
section we discuss how abandoning these 
assumptions raises new opportunities but also 
challenges for efficient parallel data processing 
in clouds. 

 
A. OPPORTUNITIES 
Today's processing frameworks typically 

assume the re-sources they manage consist of a 
static set of homogeneous compute nodes. 
Although designed to deal with individual nodes 
failures, they consider the number of available 
machines to be constant, especially when 
scheduling the processing  job's execution. 
While IaaS clouds can certainly be used to create 
such cluster-like setups, much of their flexibility 
remains unused. One of an IaaS cloud's key 
features is the provisioning of compute resources 
on demand. New VMs can be allocated at any 
time through a well-defined interface and 
become available in a matter of seconds. 
Machines which are no longer used can be 
terminated instantly and the cloud customer will 
be charged for them no more. Moreover, cloud 
operators like Amazon let their customers rent 
VMs of different types, i.e. with different 
computational power, different sizes of main 
memory, and storage. Hence, the compute 
resources available in a cloud are highly 
dynamic and possibly heterogeneous. 

 
B. CHALLENGES 
The cloud’s virtualized nature helps to enable 

promising new use cases for efficient parallel 
data processing. However, it also imposes new 

challenges compared to classic cluster setups. 
The major challenge we see is the cloud’s 
opaqueness with prospect to exploiting data 
locality: In a cluster the compute nodes are 
typically interconnected through a physical high 
performance network. The topology of the 
network, i.e. the way the compute nodes are 
physically wired to each other, is usually well 
known and, what is more important, does not 
change over time. Current data processing 
frameworks offer to leverage this knowledge 
about the network hierarchy and attempt to 
schedule tasks on compute nodes so that data 
sent from one node to the other has to traverse as 
few network switches as possible [9]. That way 
network bottlenecks can be avoided and the 
overall throughput of the cluster can be 
improved. In a cloud this topology information is 
typically not exposed to the customer [29]. Since 
the nodes involved in processing a data intensive 
job often have to transfer tremendous amounts of 
data through the network, this drawback is 
particularly severe; parts of the network may 
become congested while others are essentially 
unutilized. Although there has been research on 
inferring likely network topologies solely from 
end- to-end measurements (e.g. [7]), it is unclear 
if these techniques are applicable to IaaS clouds. 
For security reasons clouds often incorporate 
network virtualization techniques (e.g. [8]) 
which can hamper the inference process, in 
particular when based on latency measurements. 

 
III. DESIGN 
Based on the challenges and opportunities 

outlined in the previous section we have 
designed Nephele, a new data processing 
framework for cloud environments. Nephele 
takes up many ideas of previous processing 
frameworks but refines them to better match the 
dynamic and opaque nature of a cloud. 

 
A. ARCHITECTURE 
Nephele's architecture follows a classic 

master-worker pattern as illustrated in fig. 1.Fig 
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 Fig. 1: Structural Overview of Nephele Running 
in an Infrastructure-as-a-Service (IaaS) Cloud 

Before submitting a Nephele compute job, a 
user must start a VM in the cloud which runs the 
so called Job Manager (JM). The Job Manager 
receives the client’s jobs, is responsible for 
scheduling them, and coordinates their 
execution. It is capable of communicating with 
the interface the cloud operator provides to 
control the instantiation of VMs. We call this 
interface the Cloud Controller. By means of the 
Cloud Controller the Job Manager can allocate 
or de allocate VMs according to the current job 
execution phase. We will comply with common 
Cloud computing terminology and refer to these 
VMs as instances for the remainder of this paper. 
The term instance type will be used to 
differentiate between VMs with different 
hardware characteristics. E.g., the instance type 
“m1.small” could denote VMs with one CPU 
core, one GB of RAM, and a 128 GB disk while 
the instance type “c1. X large” could refer to 
machines with 8 CPU cores, 18 GB RAM ,and a 
512 GB disk. 

 
The actual execution of tasks which a Nephele 

job consists of is carried out by a set of instances. 
Each instance runs a so-called Task Manager 
(TM). A Task Manager receives one or more 
tasks from the JobMan- ager at a time, executes 
them, and after that informs the Job Manager 
about their completion or possible errors. Unless 
a job is submitted to the Job Manager, we expect 
the set of instances (and hence the set of Task 

Managers) to be empty. Upon job reception the 
Job Manager then decides, depending on the 
job’s particular tasks, how many and what type 
of instances the job should be executed on, and 
when the respective instances must be 
allocated/de allocated to ensure a continuous but 
cost efficient processing. Our current strategies 
for these decisions are highlighted at the end of 
this section. The newly allocated instances boot 
up with a previously compiled VM image. The 
image is configured to automatically start a Task 
Manager and register it with the Job Manager. 
Once all the necessary Task 

Managers have successfully contacted the Job 
Manager, it triggers the execution of the 
scheduled job. 

After having specified the code for the 
particular tasks of the job, the user must define 
the DAG to connect these tasks. We call this 
DAG the Job Graph. The Job Graph maps each 
task to a vertex and determines the 
communication paths between them. The 
number of a vertex's incoming and outgoing 
edges must thereby comply with the number of 
input and output gates defined inside the tasks. 
In addition to the task to execute, input and 
output vertices (i.e. vertices with either no 
incoming or outgoing edge) can be associated 
with a URL pointing to external storage facilities 
to read or write input or output data, 
respectively. Fig. 2, illustrates the simplest 
possible Job Graph. It only consists of one input, 
one task, and one output vertex. Fig 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Number of Subtasks 
A developer can declare his task to be suitable 
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for parallelization. Users that include such tasks 
in their Job Graph can specify how many parallel 
subtasks Nephele should split the respective task 
into at runtime. Subtasks execute the same task 
code, however, they typically process different 
fragments of the data. 

2. Number of Subtasks Per Instance 
By default each subtask is assigned to a 

separate instance. In case several subtasks are 
supposed to share the same instance, the user can 
provide a corresponding an- notation with the 
respective task. 

3. Sharing Instances Between Tasks 
Subtasks of different tasks are usually 

assigned to different (sets of) instances unless 
prevented by another scheduling restriction. If a 
set of instances should be shared between 
different tasks the 

user can attach a corresponding annotation to 
the Job Graph. 

4. Channel Types 
For each edge connecting two vertices the user 

can determine a channel type. Before executing a 
job, Nephele requires all edges of the original 
Job Graph to be replaced by at least one channel 
of a specific type. The channel type dictates how 
records are transported from one subtask to 
another at runtime. Currently, Nephele supports 
network, file, and in- memory channels. The 
choice of the channel type can have several 
implications on the entire job schedule. 

A more detailed   discussion on this is 
provided in the next subsection. 

 
IV. EVALUATION 

In this section we want to present first 
performance results of Nephele and compare 
them to the data processing framework Hadoop. 
We have chosen Hadoop as our competitor, 
because it is an open source software and 
currently enjoys high popularity in the data 
processing community. We are aware that 
Hadoop has been designed to run on a very large 
number of nodes (i.e. several thousand nodes). 
However, according to our observations, the 
software is typically used with significantly 
fewer instances in current IaaS clouds. In fact, 
Amazon itself limits the number of available 
instances for their MapReduce service to 20 
unless the respective customer passes an 
extended registration process [2]. The challenge 

for both frameworks consists of two abstract 
tasks: Given a set of random integer numbers, 
the first task is to determine the k smallest of 
those numbers. The second task subsequently is 
to calculate the average of these k smallest 
numbers. The job is a classic representative for a  
variety of data. 
 
V. RELATED WORK 
In recent years a variety of systems to facilitate 
MTC has been developed. Although these 
systems typically share common goals (e.g. to 
hide issues of parallelism or fault tolerance), 
they aim at different fields of application. Map 
Reduce [9] (or the open source version Hadoop 
[25]) is designed to run data analysis jobs on a 
large amount of data, which is expected to be 
stored across a large set of share- nothing 
commodity servers. Map Reduce is highlighted 
by its simplicity: Once a user has fit his program 
into the required map and reduce pattern, the 
execution framework takes care of splitting the 
job into subtasks, distributing and executing 
them. A single Map Reduce job always consists 
of a distinct map and reduce program. However, 
several systems have been introduced to 
coordinate the execution of a sequence of Map 
Reduce jobs [17,19]. Map Reduce has been 
clearly designed for large static clusters. 
Although it can deal with sporadic node failures, 
the available compute resources are essentially 
considered to be a fixed set of homogeneous 
machines. The Pegasus framework by 
Deelmanetal. 
 
VI. RESULTS 
show the performance results of our three 
experiment, respectively. All three plots 
illustrate the average instance utilization over 
time, i.e. the average utilization of all CPU cores 
in all instances allocated for the job at the given 
point in time. The utilization of each instance has 
been monitored with the Unix command "top" 
and is broken down into the amount of time the 
CPU cores spent running the respective data 
processing framework (USR), the kernel and its 
processes (SYS), and the time waiting for I/O to 
complete (WAIT). In order to illustrate the 
impact of network communication, the plots 
additionally show the average amount of IP 
traffic flowing between the instances over time. 
We begin with discussing Experiment 1 (Map 
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Reduce and Hadoop): For the first Map Reduce 
job, Tera Sort, fig. 7, shows a fair resource 
utilization. During the map (point (a) to (c)) and 
reduce phase (point (b) to (d)) the overall system 
utilization ranges from 60 to 80%. This is 
reasonable since we configured Hadoop's Map 
Reduce engine to perform best for this kind of 
task. For the following two Map Reduce jobs, 
however, the allocated instances are oversized: 
The second job, whose map and reduce phases 
range from point (d) to (f) and point (e) to (g), 
respectively, can only utilize about one third of 
the available CPU capacity. The third job 
(running between point (g) and (h)) can only 
consume about 10 % of the overall resources 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
VII. CONCLUSION 
In this paper we have discussed the challenges 
and opportunities for efficient parallel data 

processing  in cloud environments and 
presented Nephele, the first data processing 
framework to exploit the dynamic resource 
provisioning offered by today's IaaS clouds. We 
have described Nephele's basic architecture and 
presented a performance  comparison to  th 
well- established  data   processing  
framework Hadoop. The performance evaluation 
gives a first impression on how the ability to 
assign specific virtual machine types to specific 
tasks of a processing job, as well as the 
possibility     to  automatically allocate/de 
allocate virtual machines in the course. 
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